Mean growth of $H^p$ functions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On The Mean Convergence of Biharmonic Functions

Let denote the unit circle in the complex plane. Given a function , one uses t usual (harmonic) Poisson kernel for the unit disk to define the Poisson integral of , namely . Here we consider the biharmonic Poisson kernel for the unit disk to define the notion of -integral of a given function ; this associated biharmonic function will be denoted by . We then consider the dilations ...

متن کامل

Hp -interpolation of Non-smooth Functions

The quasi-interpolation operators of Clément and Scott-Zhang type are generalized to the hp-context. New polynomial lifting and inverse estimates are presented as well.

متن کامل

Hyperbolic Mean Growth of Bounded Holomorphic Functions in the Ball

We consider the hyperbolic Hardy class %Hp(B), 0 < p < ∞. It consists of φ holomorphic in the unit complex ball B for which |φ| < 1 and sup 0<r<1 ∫ ∂B {%(φ(rζ), 0)} dσ(ζ) < ∞, where % denotes the hyperbolic distance of the unit disc. The hyperbolic version of the Littlewood-Paley type g-function and the area function are defined in terms of the invariant gradient of B, and membership of %Hp(B) ...

متن کامل

Mean oscillation of functions

The oscillatory behavior of functions with compactly supported Fourier transform is characterized in a quantiied way using various function spaces. In particular, the results in this paper show that the oscillations of a function at large scale are comparable to the oscillations of its samples on an appropriate discrete set of points. Several open questions about spaces of sequences are answere...

متن کامل

on the mean convergence of biharmonic functions

let denote the unit circle in the complex plane. given a function , one uses t usual (harmonic) poisson kernel for the unit disk to define the poisson integral of , namely . here we consider the biharmonic poisson kernel for the unit disk to define the notion of -integral of a given function ; this associated biharmonic function will be denoted by . we then consider the dilations for and . the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Publicacions Matemàtiques

سال: 1998

ISSN: 0214-1493

DOI: 10.5565/publmat_42298_02