منابع مشابه
On The Mean Convergence of Biharmonic Functions
Let denote the unit circle in the complex plane. Given a function , one uses t usual (harmonic) Poisson kernel for the unit disk to define the Poisson integral of , namely . Here we consider the biharmonic Poisson kernel for the unit disk to define the notion of -integral of a given function ; this associated biharmonic function will be denoted by . We then consider the dilations ...
متن کاملHp -interpolation of Non-smooth Functions
The quasi-interpolation operators of Clément and Scott-Zhang type are generalized to the hp-context. New polynomial lifting and inverse estimates are presented as well.
متن کاملHyperbolic Mean Growth of Bounded Holomorphic Functions in the Ball
We consider the hyperbolic Hardy class %Hp(B), 0 < p < ∞. It consists of φ holomorphic in the unit complex ball B for which |φ| < 1 and sup 0<r<1 ∫ ∂B {%(φ(rζ), 0)} dσ(ζ) < ∞, where % denotes the hyperbolic distance of the unit disc. The hyperbolic version of the Littlewood-Paley type g-function and the area function are defined in terms of the invariant gradient of B, and membership of %Hp(B) ...
متن کاملMean oscillation of functions
The oscillatory behavior of functions with compactly supported Fourier transform is characterized in a quantiied way using various function spaces. In particular, the results in this paper show that the oscillations of a function at large scale are comparable to the oscillations of its samples on an appropriate discrete set of points. Several open questions about spaces of sequences are answere...
متن کاملon the mean convergence of biharmonic functions
let denote the unit circle in the complex plane. given a function , one uses t usual (harmonic) poisson kernel for the unit disk to define the poisson integral of , namely . here we consider the biharmonic poisson kernel for the unit disk to define the notion of -integral of a given function ; this associated biharmonic function will be denoted by . we then consider the dilations for and . the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Publicacions Matemàtiques
سال: 1998
ISSN: 0214-1493
DOI: 10.5565/publmat_42298_02